
A - B
A -
A + B, $A + $B
A•B
A B

AA B

-A
+A
LOGICAL OPERATORS

ILLEGAL DELIMITER
UNDEFINED FUNCTION
UNDIMENSIONED VARIABLE

UNDERFINED VARIABLE
EXPANSION EPROM NOT INSI ALLIED

INTERRUPT W TRAP

INVALID BAUD RATE
TAPE READ ERROR
EPROM VERIFY ERROR
INVALID DEVICE NUMBER

RELATIONAL OPERA) ORS

II I RUE and 0 if FALSE

A B
A- -B
A<B

- B
A> B
A> -B
A<>B
NOTA
A AND B
A OR B

OPERATOR PRECEDENCE

'1's complement of integer
'Bit w:se AND
'Bit wise OR
"Bit wise exclusive OR

LXOR
NOT, LNOT
AND, LAND
OR, LOR
(=)ASSIGNMENT

1 = SYNTAX ERROR 	 37
2 - UNMATCHED PARENTHESIS 	38 =
3 = INVALID LINE NUMBER 	 39 =
4 = ILLEGAL VARIABLE NAME 	 40 -
5 - TOO MANY VARIABLES 	 41 =

6 -- ILLEGAL CHARACTER 	 42 =

7= EXPEC1ING OPERATOR 	 43 =
8 - ILLEGAL FUNCTION NAME 	 44 =
9 - ILLEGAL FUNCTION ARGUMENT 	45 =

10- STORAGE OVERFLOW 	 46=
11= STACK OVERFLOW
12- STACK UNDERFLOW
13- NO SUCH LINE NUMBER
14 - EXPECTING STRING VARIABLE
15 - INVALID SCREEN COMMAND

16 = EXPECTING DIMENSIONED VARIABLE
17 = SUBSCRIPT OUT OF RANGE
18= TWO FEW SUBSCRIPTS
19= TOO MANY SUBSCRIPTS
20 - EXPECTING SIMPLE VARIABLE
21 = DIGITS OUT OF RANGE (0< A of digits <12)
22= EXPECTING VARIABLE
23 - READ OUT OF DATA

24 	READ TYPE DIFFERS FROM DATA TYPE
25= SQUARE ROOT OF NEGATIVE NUMBER
26- LOG OF NON-POSITIVE NUMBER
27 = EXPRESSION TOO COMPLEX

28 - DIVISION BY ZERO

29 = FLOATING POINT OVERFLOW
30- FIX ERROR
31 - FOR WITHOUT NEXT
32- NEXT WITHOUT FOR
33 = EXP FUNCTION HAS INVALID ARGUMENT
34 - UNNORMALIZED NUMBER
35- PARAMETER ERROR

36= MISSING ASSIGNMENT OPERATOR

Assignment
Negation or subtraction
Addition or string concatenation
Multiplication
Division

Exponentkftsm

Unary Minus
Unary Plus

THUS if eq,ial else FALSE
'TRUE if approximately equal (1E-7), else FALSE
TRUE if less than else FALSE
TRUE if less than or equal, else FALSE
TRUE if greater than, else FALSE
TRUE if greater than or equal, else FALSE
TRUE if not equal, else FALSE
'TRUE if zero, else FALSE
•TRUE if both non-zero, else FALSE
'TRUE if either non-zero, else FALSE

7
8
9

10
11
12

LNOT A

A LAND B
A LOR B
A LXOR B

1 Expressions in parentheses
2 Exponentiation and negation
3 	• ,7
4 +,-

5
6

INPUT OPTIONS

string-var

exp

%exp

"<In>

TAB <(exp)>

string

so. exp

,exp

:exp

<hex value>

string

Prompt with colon and loot c hat acter Sate
Example INPUT 8A

Dehmn express.ons Example A, B

Suppress prompting or CR LF if at end of hire
Examples INPUT ,A

INPUT A.

Allow a maximum of exp characters to be entered
Example INPUT x 1"Y or 1,1"51

'Must enter exactly exp number of characters
Example INPUT %4"CODE"C

in Invalid input or entry of a cc- 1 •-' "'aracter,
B is performed to the line A will be
- 1 if there was an invalid

SYS(0) will equal the decimal equivalent of the control
character
Example INPUT , 100,A

Delimit exp 	s or suppress CR LF it at end of line
Examples, 	' 	k,B

k,
Tab to next print Field Example PRINT A, B

Tab to exp column Example PRINT TAB (50),A

Print string or string-var Example PRINT "Hl",$A(0)

'Print es', as hexadecimal In free format
Example PRINT = 123

'Print cop as hexadecimal in byte format
Example PRINT A ,50

° Print exp as hexadecimal in word format
Example PRINT A ,A

°Direct output of ASCII codes Example PRINT
"<00> <OA>"

• Print under specified format where
PRINT # "99991
9 digit holder

PRINT # "000-00-0000"SS
0 = digit holder or force 0

PRINT # "$$$,$$$ 00"DLR
$ digit holder and floats $

PRINT A "SSS 0000"4 • ATN1
S - digit holder and floats sign

PRINT # "«< 00>"I
digit holder and float on negative

>number

PRINT A "990 99E"N
E = sign holder after decimal

PRINT # "990 99"N
= decimal point specifier

PRINT # "999,990 99 -9
, = suppressed if before significant digit

PRINT # "999,990 A 001
-- translates Io deslasil ',oat

PRINT 	99 '1
any other character is printed.

TEXAS INSTRUMENTS

POWER BASIC
Reference
Data
Microprocessor
Series -

OUTPUT OPTIONS

ERROR CODES
	

ARITHMETIC OPERATIONS

REFERENCE CARD FOR DEVELOPMENT AND EVALUATION BASIC

This card contains a summary of all POWER BASIC} statements and commands for
Development and Evaluation BASIC An explanation preceded by an asterisk (") indicates
the statement or command is not supported by Evaluation BASIC A • indicates the
statement is supported only by the Development BASIC software enhancement package.

t Trademark or Texas Instruments

COMMANDS

CONtinue

"Execution continues from last break

I511;

LIST the user's POWER BASIC program In LIST will list from specified line number
through end of program or until ESC key is struck

LOAD

Reads a previously recorded POWER E
	

dogram from an auxiliary device or
configures POWER BASIC to execute 	program in EPROM.
LOAD reads program from 733A00 mr
LOAD 1 or LOAD 2 • reads prog

	
1 audio cassette drive No. 1 or No 2

LOAD <address>• configures I
	

BASIC to execute BASIC program in
EPROM at specified address

NEW

Prepare for entry of NEW POWER BASIC program or set the lower RAM memory
bound after auto-sizing.
NEW clears pointers of POWER BASIC and prepares for entry of new program.
NEW <address> ° sets the lower RAM memory bound used by POWER BASIC
after auto-sizing or power-up

PROGRAM

Program current POWER BASIC application program into EPROM

RUN

Begin program execution at the lowest line number

SAVEn (n Is interpreted as in LOADS command)

Record current user program on auxiliary device

SIZE

Display current program size, variable space allocated, and available memory in
bytes

GENERAL INFORMATION

SPECIAL CHARACTERS

Separates slaiements typed t i n same line
lad remark used for comments atter program statement

; 	Equivalent to PRINT

°Designates device(s) to receive all printed output

FUNCTIONS

'Absolute value of expression

'Returns decimal ASCII code for first character of
string variable
Arctangent of expression in radians
'Reads or modifies any bit within a variable.
Returns a 1 if bit Is ser and 0 if not set
Selected bit is set to 1 it assigned value is non-zero
and to zero if the assigned value is zero

Cosine of the expression in radians
Reads CRU bit as selected by CRU base + exp Exp is
valid for — 127 thru 128
Sets or resets CRU bit as selected by CRU base + exp
1. If exp 2 is non-zero, the bit will be set, else reset
Exp 1 is valid for — 127 thru 128
Reads n CRU bits as selected by CRU base where cop
evaluates to n Exp is valid for 0 thru 15 If exp = 0, 16
bits will be read
Stores exp 1 bits of exp 2 to CRU lines as selected by
CRU BASE Exp 1 if valid for 0 thru 15 If exp 1 = 0, 16
bits will be stored
°Raise the constant e to the power of the evaluated
expression

Returns the signed integer portion of the expression
'Returns natural logarithm of the expression

Reads byte from user memory at address specified by
exp. Exp must be in the integer range, (0 to 65535)

Stores byte exp 2 into user memory specified by exp
1. Exp 1 and exp 2 must be in the integer range
'Returns the number of characters to which the two
strings agree
Conditionally samples the keyboard in run time mode
If exp < >0, return decimal value of last key struck
and clear key register (0 if no key struck)
If exp — 0, return a 1 if the last key struck has the same
decimal value as the expression Clear key register if
TRUE, else return 0 if FALSE

Returns a random number between 0 and 1
Sine of the expression in radians
Square root of expression
'Return the position of string 1 in string 2, 0 it not
found

'Obtains system parameters generated during
program execution Example SYS(0)— INPUT control
character, SYS(1)= Error code number, SYS(2) = error
line number

Returns the number of time tics less the expression
value One TIC equals 40 milliseconds (1 /25 second).

ASC (string-var)

'Convert first character of string to ASCII numeric
representation

<string-var> {<<ssttrrinircOnr>stant>

Store string into string-var ending with a null,

MCH (<string 1>, <string 2>)
'Return the number of characters to which the 2
strings agree

SRH (<string 1>, <string 2>)
'Return the position of string 1 in string 2 Zero is
returned if not found

<string-var>

<string-var> 	+ <string-var> 	lr
<string-constant> 	<string-constant> 	l • • 	.1]

<string-var> = <cop>
<string-var> # <string>, <exp>

'Convert cup to ASCII characters ending with a null.
string specities a formatted conversion

<var 1> — <string>, <var 2>
°Convert string into binary equivalent Var 2 receives
the delimiting non-numeric character in first byte
<String-var> /<exp>

'Delete exp characters from string-var

<string-var> — / <string>

'Pick byte into string-var

<string-var> = { << estt rrlIrceorn>stant> • <cup>
 Pick number of cnaracters specified by exp into

string-vat' ending with a null

<string-var>
=ss; rr rr'Z'caornsiant> • <coy>

 Replace number of characters specified by exp of
string-var with string.
<var> — LEN <(stung -vat) •
<var> — LEN "string"
°Return the length of string

ABS (exp)

ASC <(string var)>

ATN <(exp)>

BIT <(var, exp)>

BIT <(var, exp 1)> = <exp 2>

COS >[exp)>

CRB <(exp)>

CRB <leap 1)> = <(exp 2)>

CRF <(exp)>

CRF <(exp 1)> — <(exp 2)>

EXP <(exp)>

INP <(exp)>

LOG <(exp)>

MEM <(exp)>

MEM <(exp 1)> = <(exp 2)>.

MCH <(string 1), (string 2)>

NYK <(exp)>

RND

SIN <(exp)>

SOR <(exp)>

SRH <(string 1), (string 2)>

SYS <(exp)>

TIC <(exp)>

STRINGS

ASCII Character

Conversion Function

Assignment

Character Match
Function

Character Search
Function

Concatenate

Convert to ASCII

Convert to Binary

Deletion

Insertion

Pick

Replace

String Length
Function

EDITING 	InUNIT <exp>

The phrase "(ctrl" indicates that the user holds down the control key while depressing
the key corresponding to the character immediately following

(CR)
	

Enter edited line

(ctrIlly
	

°Insert n blanks

(ctrI)Dn
	

°Delete n characters

(ctrI)H
	

Backspace one character
(ctrl)F
	

Forward space one character
In(ctrI)E
	

Display for editing source line indicated by line number (In)
(ctrI)T
	

Toggle from one partition to the other partition (only in
Evaluation BASIC).

(esc)
	

Cancel input line or break program execution
(Rubout) or (DEL) Backspace and delete character

STATEMENTS

InBAUD <exp 1,> <exp 2>
'sets baud rate of serial I/O port(s)

InBASE <(exp)>
Sets CRU base address for subsequent CRU operations

InCALL •Name7<subroutine address>[, <var 1>, <var 2>, <var 3>, <var 4>)

'Transfers to external subroutines If variable is contained in parentheses, the
address will be passed otherwise, the value will be passed

In DATA
< exp>

<string const>1[{ <exP›<string const>}]
defines internal data block.

In DEF FN<x>[(<arg 1> [, arg 2]1, arg 3D] — <exp>
'Defines user arithmetic function

InDIM <var (din[, dim] 	.)> 	

Allocates user variable space for dimensioned or array variables
InEND

Terminates program execution and returns to edit mode
In ERROR<In>

'Specifies a subroutine that will be called via a GOSUB statement when an error
Occurs.

'enables or disables the excape key to interrupt program execution (always
enabled in Evaluation BASIC)

InFOR <sim-var> <exp> TO <exp> [STEP <exp>]
InNEXT <sim-var>

Open and close program loop. Both identify the same control variable. FOR assigns
starting, ending, and optionally stepping values.

InGOSUB< In>

Transfer of control to an internal subroutine beginning at the specified line
In POP

'Removal of most previous return address from GOSUB stack without an execution
transfer

InRETURN
Return from internal subroutine

InGOTO<In>
Transfers program execution to specified line number.

InIF< exp >THEN< statement>
InELSE<statement>

Causes conditional execution of the statement following THEN 'ELSE statements
execute when IF condition is false

InIMASK<LEVEL>

'Set interrupt mask of TMS 9900 processor to specified level
InTRAP<Ievel>TO<In>

°Assign interrupt level to interrupt subroutine

InIRTN

'Return from BASIC interrupt service routine

InINPUT<var> 	;. 1<var>i • • • • [1 ;

Accesses numeric constants and strings from the keyboard into variables in the
INPUT list

In [LET) <oar> = <exp>

Evaluates and assigns values to variables or array elements

r:pl THEN GOTO In [,in]

InON { vxapr '>. } THEN GOSUB In kin)

'Transfers execution to the line number specified by the expression or variable
InPRINT <cup> [..p]

Print (format free) the evaluated expressions

InRAfdDOM [cop]

'Set the seed to the specified expression value

InREAD
j<numenc var>(r <numeric var >11
1 <string var> L <string var> j

Assigns values from the internal data list to variables or array elements

InREM [text]

Inserts comments

InRESTOR]exp]

Without an argument, resets pointer to beginning of data sequence, with an
argument, resets pointer to line number specified

InSTOP
Terminates program execution and returns to Edit mode

InTIME
Sets, displays, or stores the 24 hour time of day clock

InTIME <exp>, <exp>, <exp>
Sets and starts clock
InTimP <string-var>
E 	storing clock time into a string variable
Ir 	• •

time as HR MN SD

2

	Page 1
	Page 2

